	Course Structure of 2-Year PG Programme							
		Semester-I						
SI. No	Subject Code	Name of the Subject	Course level	L	Т	P	С	ТСР
1	ZOO144C101	Biosystematics, Taxonomy and Functional Biology of Non-chordates	400	4	0	0	4	4
2	ZOO144C102	Ecology, Wildlife and Evolutionary Biology	400	4	0	0	4	4
3	ZOO144C103	Cell Biology and Genetics	400	4	0	0	4	4
4	ZOO144C104	Biostatistics and Computational Biology	400	4	0	0	4	4
5	ZOO144C111	Practical I	400	0	0	4	2	4
6	ZOO144C112	Practical II	400	0	0	4	2	4
							20	24
		Semester- II						
7	ZOO144C201	Functional Biology of Chordates and Biodiversity	500	4	0	0	4	4
8	ZOO144C202	Histology, Histochemistry, Toxicology and Bioinstrumentation	500	4	0	0	4	4
9	ZOO144C203	Biochemistry and Immunology	500	4	0	0	4	4
10	ZOO144 C204	Limnology and economic zoology	500	4	0	0	4	4
11	ZOO144C215	Practical III	500	0	0	4	2	4
12	ZOO144C215	Practical IV	500	0	0	4	2	4
							20	24
		Semester- III						
15	ZOO144C341	Physiology, Endocrinology and Animal Behaviour	500	3	0	1	4	4
16	ZOO144C342	Molecular Biology, Analytical Techniques and Animal Biotechnology	500	3	0	1	4	4
19	ZOO144C323	Dissertation		0	0	16	8	16
		Elective courses (anyone t	o be select	ted)				
20	ZOO144D341	Ecology, Environmental and Wildlife Biology	500	3	0	1	4	4
21	ZOO144D342	Cell and Molecular Biology	500	3	0	1	4	4
22	ZOO144D343	Aquatic Biology and Fishery Sciences	500	3	0	1	4	4
23	ZOO144D344	Toxicology	500	3	0	1	4	4

24	ZOO144D345	Entomology	500	3	0	1	4	4
		OR						
25	ZOO144C321	Project					20	
		Semester-IV						
26	ZOO144C441	Developmental and	500	3	0	1	4	4
		Reproductive Biology						
27	ZOO144C442	Parasitology and Vector	500	3	0	1	4	4
		Biology						
28	ZOO144C423	Dissertation		0	0	24	12	24
							20	
	OR							
29	ZOO144C421	Project					20	

Course Title: Biosystematics, Taxonomy and Functional Biology of Non-chordates Subject Code: ZOO144C101 Programme: M.Sc. Zoology Semester: I L-T-P-C: 3-1-0-4 Course Level: 400 Assessment type: Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce) Attendance: 5%, Mid Sem Examination: 10% Semester End Examination (SEE): 50%

Course Objectives:

Equip students with knowledge and hands-on experience in classical and modern research tools and techniques used in biosystematics and taxonomy across multiple domains.

Learning Outcomes:

After the successful completion of the course, the students will be able to:

	Course Outcome	Bloom's Taxonomy Level (BT)
CO1	Apply and demonstrate advanced concepts of biosystematics and taxonomy in practical scenarios	BT4& BT5
CO2	Analyze and evaluate taxonomic data and methodologies	BT5
CO3	Synthesize new taxonomic classifications and contribute to scientific literature after getting idea of existing concepts	BT5
CO4	Analyze the economic, medical, and ecological roles of invertebrates in industries.	BT4

Module	Course content	Teaching Hours
Module 1	 Biosystematics and Taxonomy: Definition and Scope of Biosystematics and Taxonomy, Historical development from Linnaean classification to modern phylogenetic systematics. Advanced Tools and Practices in Biosystematics & Museology: Specimen Curation; Techniques for labelling, cataloguing, and preserving specimens. Modern Trends in Taxonomy: Digital taxonomy (AI-based species identification), cyber taxonomy, and the role of citizen science platforms. Taxonomic Keys: Dichotomous Keys, Box keys, Visual Keys, Bracket keys, Indented keys. Multi-access Keys: Interactive digital keys (Lucid Builder, DETLA Keys) for non-linear identification & Automated Keys: Machine learning, Deep learning and Artificial Intelligence based algorithms for rapid species recognition. Digitization: 3D scanning, virtual museums, and metadata management; Ethics in taxonomy: Legal frameworks (CITES) and repatriation of biological specimens. 	12
Module 2	 Morpho-Molecular Synthesis: Combining SEM (Scanning Electron Microscopy) imaging with mitochondrial DNA data for robust species characterization, Resolving cryptic species complexes in fungi or insects. Biogeographic Data Integration: Using GIS layers (elevation, climate, habitat, and abiotic factors) in species distribution modelling and delimitation. Mapping niche divergence in species for historical distributional attributes, Incorporating GIS layers into species delimation models. Taxonomic challenges: CNNs for image-based identification, resources for CNN's like Pl@ntNet for Plants, iNaturalist for animals and Insect ID for insects. Taxonomic Revisions: Modern reclassification schemes, Bionomics 	12

	Digital Repositories for ITIS, COL, WoRMs, GBIF.	
Module 3	 Diversity in Structural Organization: Compare body symmetry, tissue/organ organization, and segmentation from Porifera to Arthropoda. Comparative analysis of body plans across phyla (Porifera to Arthropoda); Physiological Systems: Locomotion (hydrostatic skeletons, ciliary movement); Feeding mechanisms (filter feeding, predation, symbiosis); Respiration, excretion, and nervous systems in key non-chordates; Reproductive Strategies: Asexual vs. sexual reproduction, larval development, and life cycles; Mimicry, camouflage, and toxin production (nudibranchs storing cnidarians toxins); Adaptations: Case studies on extremophiles (Tartigrades) and adaptive radiation. Physiological Systems in Non-Chordates: Locomotion by Hydrostatic skeletons (earthworms), ciliary movement (Planaria), and exoskeleton-driven motion (Arthropoda); Feeding Mechanisms like Filter feeding (sponges), predation (cnidarian nematocysts), and symbiosis (coral-zooxanthellae); Respiration & Excretion: Cutaneous respiration (annelids), Malpighian tubules (insects), and flame cells (Platyhelminthes); Nervous Systems: Nerve nets (Cnidaria) vs. centralized ganglia (Arthropoda). Reproductive Strategies & Life Cycle Diversity: Asexual vs. Sexual reproduction; Larval Development: Trochophore larvae (Annelida), planula larvae (Cnidaria), and metamorphosis in insects; Life Cycle Complexity: Alternation of generations 	12
Module 4	 Economic and Ecological Impact: Role of invertebrates in aquaculture, sericulture, apiculture, lac-culture, ecosystem services and other new technologies; Medical and Biomedical Research: <i>Drosophila melanogaster</i> in genetics, <i>Caenorhabditis elegans</i> in developmental biology; Venomous arthropods in drug discovery. Environmental and Industrial Applications: Invertebrate Bio indicators in pollution studies; non-chordates in biotechnology for improvement of production (silk, lac, apiculture, chitin-based applications and other new technologies). 	12

- 1. Theory and Practice of Animal Taxonomy and Biodiversity" by V.C. Kapoor
- 2. Descriptive Taxonomy: The Foundation of Biodiversity Research" by Mark F. Watson and Chris H.C. Lyal

Reference Books:

- 1. Introductory Biosystematics and Taxonomy" by M.M. Trigunayat & Kritika Trigunayat
- 2. Biodiversity Taxonomy and Ecology" by G.K. Singh.

Course Title: Ecology, Wildlife and Evolutionary Biology Subject Code: ZOO144C102 Programme: M.Sc. Zoology Semester: I L-T-P-C: 3-1-0-4 Course Level: 400 Assessment type: Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce) Attendance: 5%, Mid Sem Examination: 10% Semester End Examination (SEE): 50%

Course Objectives:

To develop advanced understanding of ecological, evolutionary, and wildlife principles to address environmental challenges. Synthesize advanced concepts to tackle complex issues. Gain expertise in ecosystem dynamics, evolutionary mechanisms, and wildlife conservation strategies. Apply interdisciplinary approaches to design research, evaluate conservation policies, and innovate sustainable solutions.

Learning Outcomes:

	Course Outcome	Bloom's Taxonomy Level (BT)
CO 1	Demonstrate foundational knowledge of ecological and evolutionary principles.	BT 1,2
CO 2	Apply the knowledge and critically evaluate ecological and evolutionary theories in wildlife contexts.	BT 3,4,5
CO 3	Design advanced research methodologies for ecosystem and genetic diversity studies.	BT 5,6
CO 4	Formulate conservation strategies integrating evolutionary principles and policy frameworks.	BT 6
CO 5	Propose innovative solutions to anthropogenic impacts using interdisciplinary approaches.	BT 6

Module	Course content	Teaching hours
Module 1	 Advanced Ecological and Evolutionary Foundations: Definition and scope of ecology, ecological and evolutionary concepts and their application in ethology. Theoretical Ecology: Metacommunity dynamics, resilience and evolutionary principles like Evolutionary Stable Strategies (ESS), game theory and its application in mammals using ESS frameworks. DNA barcoding and aided application in species identification. Application of Game Theory: Model wildlife conflict resolution in territorial disputes in mammals using ESS frameworks. Molecular Ecology & Phylogenetics: DNA barcoding, phylogeography, and coalescent theory. Phylogenetic comparative methods and trait evolution. Ecological Genomics: Gene-environment interactions, epigenetics in adaptation. 	12
Module 2	 Wildlife Ecology and Evolutionary Adaptations: Concepts of wildlife ecology, evolutionary adaptation in understanding population dynamics, adaptation strategies, and application in the field of conservation biology. Wildlife Population Genetics: Genetic drift, inbreeding depression, and effective population size in fragmented habitats. Adaptive radiations of Darwin's finches in island biogeography. Behavioral Ecology & Evolutionary Trade-offs: Optimal foraging theory, sexual selection, and life-history strategies. Anthropogenic Impacts: Evolutionary traps, hybridization in 	12

changing climates, and urban wildlife adaptations. Case Study: Tige	r
conservation genetics in India.	
Module 3Ecosystem Dynamics and Macroevolutionary Processes Foundational concepts on ecosystems, macroevolution, biodiversity and spatio-temporal dynamics for ecological modeling.Advanced Ecosystem Modeling: Trophic cascades, metacommunity networks, and ecosystem service valuation using Ecopath with Ecosim, EcoNet, MIKE ECO Lab and R. Macroevolutionary Patterns: Mass extinctions, adaptive radiations, and predator-prey coevolution. Landscape & Spatial Ecology: Habitat connectivity, corridor design, and climate envelope modeling.Historical Biogeography: Gondwana breakup impacts on species distributions.	, 12
Applied Conservation and Evolutionary Innovations: Recent conservation concepts, evolutionary innovation for species protection, habitat restoration, and conservation action plan development.Module 4Conservation Policy & Ethics: CITES, CBD, and the role of IUCN 	s n N 1 12 ,
Total	48

- 1. Odum, E. P., & Barrett, G. W. (2005). Fundamentals of ecology. Cengage Learning.
- 2. Primack, R. B. (2014). Essentials of conservation biology (6th ed.). Oxford University Press.
- **3.** Sharma, P. D. (2010). Ecology and environment. Rastogi Publications.
- 4. Futuyma, D. J. (2017). Evolutionary biology (4th ed.). Sinauer Associates.

Reference Books:

- 1. Barrick, Barrett and Odum (2005). Fundamentals of Ecology. 5th Ed, Cengage Publication.
- **2.** Verma, P.S., Agarwal, V.K. (1999). Cell biology genetics molecular biology evolution and ecology. New Delhi: S. Chand Co. (Pvt) Ltd.

Course Title: Cell Biology and Genetics Subject Code: ZOO144C103 Programme: M.Sc. Zoology Semester: I L-T-P-C: 3-1-0-4 Course Level: 400 Assessment type: Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce) Attendance: 5%, Mid Sem Examination: 10% Semester End Examination (SEE): 50%

Course Objectives:

This course aims to provide postgraduate students with an in-depth understanding of cell biology, covering membrane dynamics, intracellular trafficking, signal transduction, cell cycle regulation, apoptosis, cancer biology, and stem cell research. It integrates modern research tools and advanced techniques, enabling students to explore cellular mechanisms at both molecular and functional levels.

Learning Outcomes:

	Course Outcome	Bloom's Taxonomy Level (BT)
CO1	Recall and describe fundamental concepts of membrane dynamics, intracellular transport, and cellular communication, emphasizing their roles in cell structure and function	BT1
CO2	Explain and interpret the regulatory mechanisms governing the cell cycle, apoptosis, and cancer progression to develop a conceptual framework for cellular regulation.	BT2
CO3	Apply knowledge of advanced cell biology techniques, such as CRISPR, flow cytometry, and live-cell imaging, to analyse and solve biological research problems.	BT3
CO4	Analyse the potential factors for human genetical diseases therapeutic interventions to cure such diseases.	BT4
CO5	Critically evaluate experimental data, research methodologies, and contemporary advancements in cell biology and genetics to formulate evidence-based scientific conclusions.	BT5

Module	Course content	Teaching hours
Module 1	Membrane transport: Structural organization of cell membrane; Transmembrane transport of ions and small molecules (active, passive & bulk transport), Donnan equilibrium theory, Fluorescence Recovery After Photobleaching (FRAP), Hydropathy plot Intracellular Trafficking and Vesicular Transport: Endocytic pathways: Clathrin-mediated and caveolae-dependent endocytosis, role of Rab and SNARE proteins in vesicle docking and fusion, Golgi vesicular trafficking, post-translational modifications, protein sorting. Nuclear Transport –Import and Export of protein; Export of different RNAs; Nucleo-cytoplasmic interactions & their role in cellular processes.	12
	Cytoskeleton: Structure and function of microfilaments, microtubules and intermediate filaments; cytoskeleton mediated movement of biomolecules.	
Module 2	Cell Cycle and Cell Death: Phases in cell cycle, Cell cycle regulation; cyclins, cyclin-dependent kinases, and cell cycle checkpoints; Apoptosis: Intrinsic and extrinsic pathways. Necroptosis and autophagy-related cell death.	12
Wodule 2	Cancer Biology: Oncogenes and tumour suppressor (Ras, Myc, p53, RB, BRCA), Cancer stem cells and tumour microenvironment, Modern therapeutic approaches: Immunotherapy, targeted therapy, CRISPR-based interventions.	12
Module 3	Chromatin structure: Eukaryotic chromatin structure and chromosome organization; Chromosomal proteins; Levels of chromatin condensation at interphase and meta phase stages; Centromere, kinetochore and telomere.	12

	Human cytogenetics & genetic diseases: Karyotype and nomenclature of metaphase chromosome bands; Genetic counseling; Common syndromes caused by aneuploidy, mosaicism, deletion and duplication; molecular basis for Hemophilia, Sickle cell anemia, Thalassemia, Xeroderma pigmentosum, Cystic fibrosis, Duchenne muscular dystrophy.	
Module 4	Population genetics: Hardy-Weinberg's law of equilibrium; Forces of destabilization-mutation & mutation rates; natural selection- gamete, recessive & lethal selection, heterozygote advantages; Factors changing allelic frequencies-mutation, selection, genetic drift, migration, meiotic drive; Variation- genetic polymorphism, causes of genetic variation, population variation; Measure of genetic variation. Optimum phenotype selection, Fisher's pressure, genetic homeostasis, genetic load & death, mutation load Inbreeding: Measure of inbreeding. Inbreeding depression, heterosis; Gene & environment interaction	12
Total	,	48

- 1. Karp, G., Iwasa, J., & Marshall, W. (2020). *Karp's Cell and Molecular Biology*. John Wiley & Sons.
- Lodish H, Berk A, Kaiser C.A, Krieger M, Bretscher A, Ploegh H, Amon A, Martin K.C (2016). Molecular Cell Biology, 8th Ed, W. H. Freeman.
- Snustad D.P & Simmons M.J (2015). Principles of Genetics. 7th Ed, John Wiley & Sons, USA.

Reference Books:

- Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2018). *Molecular biology of the cell*. 6th Ed, Garland Science.
- 2. Cooper G.M (2019). The Cell: A Molecular Approach. 8th Ed, Sinauer Associates.
- 3. Hardin J & Bertoni G (2018). Becker's World of the Cell. 9th Ed, Pearson Education.
- 4. Tamarin R.H (2001). Principles of Genetics. 7th Ed, McGraw-Hill Education.
- 5. Russell P.J (2016). iGenetics: A Molecular Approach. 3rd Ed, Pearson Education.
- 6. Pierce B.A (2012). Genetics: A conceptual approach. 4th Ed, W.H. Freeman.
- Griffiths A.J.F, Wessler S.R, Carroll S.B, Doebley J (2010). Introduction to Genetic Analysis. 10th Ed, W. H. Freeman.

Semester-I

Course Title: Biostatistics and Computational Biology M.Sc. Zoology Course Code: ZOO144C104 L-T-P-C- 3-1-0-4 Course Level: 400 Credit Units: 4 Scheme of Evaluation: Theory

Course Objective:

.

Course Outcomes:

The course is designed to provide advanced training in biostatistical analysis and computational biology techniques, emphasizing both the theoretical foundations and practical applications necessary for innovative research in zoology.

Course Outcome	Course Outcome	Bloom's Taxonomy Level
CO1	Identify and recall fundamental descriptive statistical concepts—including mean, median, mode, standard deviation, and standard error—as well as advanced probability distributions essential for biological data analysis.	BT1
CO2	Explain inferential statistical methods, such as hypothesis testing, confidence interval construction, and various regression techniques, within the context of complex biological datasets.	BT2
CO3	Apply advanced biostatistical techniques and computational algorithms to analyze, interpret, and manage diverse zoological datasets, including those derived from genomics and proteomics studies.	BT3
CO4	Critically evaluate statistical models and computational methodologies, integrating multiple approaches to design robust experiments and draw evidence-based conclusions in biological research.	BT4
CO5	Develop innovative computational models, tools, or algorithms by synthesizing biostatistical and computational biology principles to address complex research challenges in zoology.	BT5

Modules	Course content	
Ι	Foundations of Descriptive Statistics: Measures of Central Tendency: Mean, Median, Mode; Measures of Variability: Range, Variance, Standard Deviation, Standard Error.	12

	Advanced Probability and Statistical Distributions: Brief review of	
	essential probability concepts; Detailed study of advanced distributions	
	(e.g., Beta, Gamma, Poisson)	
	Inferential Statistics for Complex Biological Data: Advanced	
	hypothesis testing methods; Construction and interpretation of confidence intervals in multivariate contexts	
	Multivariate Analysis and Advanced Regression Techniques:	
	Principal Component Analysis (PCA), Cluster Analysis, and	
	Discriminant Analysis Multiple linear regression, logistic regression,	
	and generalized linear models (GLMs)	
	Mixed-Effects Models and Repeated Measures Analysis:	
	Distinction between fixed and random effects; Application in time	
	series and survival analysis (e.g., Cox regression) Bayesian Statistical Methods: Fundamentals of Bayesian inference;	
	Applications in biological data analysis	
Π	Statistical Software and Data Visualization: Hands-on sessions	12
11	using R (advanced packages for complex data); Techniques for	14
	effective visualization of high-dimensional datasets	
	Case Studies in Zoological Research: Application of advanced	
	statistical models to wildlife data; Critical evaluation and interpretation	
	of experimental and observational studies.	
	Computational Genomics: Overview of genome sequencing	
	technologies and assembly techniques; Comparative genomics:	
	sequence alignment, annotation, and phylogenetic analysis.	
	Structural Bioinformatics: Methods for protein structure prediction	
	and modelling; Molecular docking and simulation techniques;	
Ш	Bioinformatics Tools and Databases: Overview and practical use of	12
	key databases (e.g., NCBI, EMBL); Utilization of computational tools	14
	for sequence analysis (e.g., BLAST, Clustal).	
	Applications in Zoology: Integration of genomics in wildlife and	
	conservation research; Case studies in evolutionary analysis using	
	bioinformatics methods.	
	Systems Biology and Network Analysis: Construction and analysis	
	of biological networks; Mapping metabolic and gene regulatory	
TT 7	pathways.	
IV	Mathematical Modelling of Biological Systems: Use of differential	
	equations in modelling dynamic biological processes; Simulation	
	techniques such as Monte Carlo and agent-based models.	
	Machine Learning in Computational Biology: Overview of machine	12
	learning algorithms relevant to biological data; Applications in	
	classification, prediction, and pattern recognition in zoology.	
	Data Mining and Advanced Visualization: Techniques for mining	
	Data Mining and Advanced Visualization: Techniques for mining large-scale biological datasets; Advanced tools for visualizing complex	
	Data Mining and Advanced Visualization: Techniques for mining	

Textbooks:

1. Motulsky, H. (2014). Intuitive biostatistics (3rd ed.). Oxford University Press.

2. Lesk, A. M. (2013). Introduction to bioinformatics (5th ed.). Oxford University Press.

References:

1. Sokal, R. R., & Rohlf, F. J. (2012). Biometry (4th ed.). W. H. Freeman. 2. Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis (2nd ed.). Cold

Spring Harbor Laboratory Press.

Course Title: Practical-I
Subject Code: ZOO144C111
Programme: M.Sc. Zoology
Semester: I
L-T-P-C: 0-0-4-2
Course Level: 400
Assessment type:
Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce)
Attendance: 5%, Mid Sem Examination: 10%
Semester End Examination (SEE): 50%

Course Objectives:

- 1. Equip students with practical expertise in classical and modern taxonomic techniques for invertebrate identification, classification, and biodiversity documentation.
- 2. Develop proficiency in evaluating methodologies for specimen collection, preservation, and ecological fieldwork.
- 3. Enable critical analysis of the economic, medical, and ecological roles of invertebrates across industries.
- 4. Foster advanced skills in applied entomology, including pest management, sericulture, and forensic investigations.

Learning Outcomes:

	Course Outcome	Bloom's Taxonomy
		Level (BT)
CO1	Analyze morphological features of invertebrates to classify insects/molluscs up to family level using dichotomous keys and Evaluate the suitability of collection, preservation, and Curation methods for maintaining taxonomic integrity of specimens.	BT4&5
CO2	Assess the socio-economic and ecological impacts of insect pests in agriculture, forestry, and public health sectors and Synthesize knowledge of applied entomology to design silk moth rearing protocols and propose forensic/nutritional applications of insects.	BT5
CO3	To analyze ecological sampling techniques quantify biodiversity, analyze abiotic factors, evaluate animal adaptations, and study species assemblage patterns and their dependence on keystone species.	BT4&5
CO4	To assess and map landscapes for documenting of biodiversity hotspots, to simulate evolutionary strategies, model ecosystem dynamics, compare behavioral adaptations, and propose conservation strategies based on field observations.	BT5

Detailed Syllabus

Module	Course content	Teaching Hours
Module 1	 Study of museum specimens and slides invertebrates' phyla (one representative from each class) for biosystematics & biodiversity. Identification of insects/ molluscs with the help of keys up to orders. Identification of insects/ molluscs with the help of keys up to families. 	24
Module 2	 Methods of collection and preservation of invertebrates. Visit to fields. Study and identification of generalized insect of economic importance of following insect pests (6 pests from each category- Pests of stored gains, Household pests, Pests of medical importance, Pests of veterinary importance, Forest pests. Study of silk moths- types of silk moths, rearing appliances of mulberry and non-mulberry silk worm demonstration, life Table creation, Study of forensic insects: Succession model and larval development model. 	24
Module 3	 Study of nutritional insects. Calculating species richness, evenness, diversity indices using Quadrat sampling method Physiochemical parameters of aquatic system (temperature, pH, DO) Behavioural study of mammals and birds. Fruigovore assemblage pattern in multiple landscapes along few keystone plant species. 	24
Module 4	 Landscape characterization using GPS/GIS tools to map ecosystems (forest, wetlands, urban areas) to mark local biodiversity hotspots. Understanding of game theory simulation for wildlife conflict mitigation strategies. Ecosystem modelling to predict ecosystem resilience to disturbance using Ecopath/Ecosim applications. Comparative behavioural adaptation strategies of various taxa under multiple landcaspes (forest, wetlands and urban) Field visit to document the biodiversity of nearby forested and wetland area and associated threats. 	24

Reference books

- 1. Smith, A. B. (2020). Principles of Systematic Biology. Academic Press.
- 2. Brown, R. E. (2021). Community Ecology: Patterns and Processes. Wiley-Blackwell.
- 3. Davis, F. G. (2019). Quantitative Ecology: Data Analysis and Modeling. Springer.

Text books

- 1. Wilson, H. I. (2022). Wildlife Management and Conservation. Johns Hopkins University Press.
- 2. Clark, N. O. (2018). Principles of Evolutionary Biology. W.H. Freeman.

Semester-I
Course Title: Practical II
M.Sc. Zoology
Course Code: ZOO144C112
L-T-P-C- 4-0-0-8
Credit Units: 4
Scheme of Evaluation: Theory

Course Objective:

Course Objective

To provide the students basic hands-on training on microscopy, their use in studying cells and their variability, basic understanding of different bio parameters of human physiological processes.

Modules	Course content	
Ι	 Test goat/chicken red blood cell lysis in hypotonic/hypertonic solutions. Study of different types of blood cells from human/fish Assess yeast apoptosis using vinegar stress and methylene blue staining. Preparation of chromosomal metaphase plate from mouse bone marrow To study various stages of mitosis in mouse bone marrow/ onion root tip. Meiotic chromosome preparation from rat/ grasshopper/ sand hopper testis 	24
П	 To study the bar body from buccal smear. Preparation of human karyotype from two normal and two abnormal metaphase plates. To study G/C Banding pattern from mitotic chromosome preparation of mouse/ rat bone marrow cells To study dominant and recessive inheritance patterns in easily observable human traits. To analyse family inheritance of genetic traits using pedigree charts. 	24
ш	 Apply basic descriptive statistics and data visualization techniques to biological data. Compare height of male and female students in the university campus. Calculate biodiversity indices for local insect populations using statistical software. 	24

	 Build a simple phylogenetic tree for Indian frogs using MEGA software. Total 	24 96
IV	 Compare <i>cytochrome b</i> genes of species on NCBI. Design PCR primers for a cattle gene (e.g., lactase) using Primer3. 	24

- 1. Trigunayat, M. M., & Trigunayat, K. (2019). A Manual of Practical Zoology: Biodiversity, Cell Biology, Genetics & Developmental Biology Part-1. Scientific Publishers.
- 2. Jackson, I. J., & Abbott, C. (Eds.). (1999). *Mouse genetics and transgenics: a practical approach* (Vol. 217). OUP Oxford.
- 3. Karp, G. (2009). *Cell and molecular biology: concepts and experiments*. John Wiley & Sons.

Course Title: Functional Biology of Chordates and Biodiversity	
Subject Code: ZOO144C202	
Programme: M.Sc. Zoology	
Semester: II	
L-T-P-C: 3-1-0-4	
Course Level: 500	
Assessment type:	
Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce)	
Attendance: 5%, Mid Sem Examination: 10%	
Semester End Examination (SEE): 50%	

Course Objectives:

- 1. Equip students with comprehensive knowledge of chordate biology, focusing on functional anatomy, evolutionary relationships, and biodiversity.
- 2. Provide hands-on experience in research techniques relevant to chordate biology.

Learning Outcomes:

Course Outcome		Bloom's Taxonomy Level (BT)
CO1	Apply fundamental concepts of chordate biology in practical scenarios.	BT4
CO2	Analyze and evaluate data related to chordate evolution and biodiversity.	BT4
CO3	Synthesize information on chordate functional biology and contribute to scientific literature.	BT5
CO4	Create and Synthesize information on chordate functional biology and contribute to policy making and conservation	BT5

Module	Module Course content	
Module 1	Fish: Anatomy: Streamlined body, operculum, and countercurrent flow	10
Module 1	in gills; Physiology: Osmoregulation in freshwater vs. brackish habitats	12

[
	(Sundarbans estuaries); Behaviour: Shoaling behaviour for predator	
	avoidance in Indian river systems.	
	Amphibians: Anatomy: Dual respiratory systems (cutaneous +	
	buccopharyngeal); Physiology: Urea retention during estivation in arid	
	Indian summers; Behavior: Vocal sac adaptations for monsoon mating	
	calls.	
	Reptiles : Anatomy: Three-chambered heart with partial septum;	
	ectothermic adaptations; Physiology: Salt gland excretion in coastal	
	populations (Odisha); Behaviour: Burrowing to escape heat in	
	Rajasthan's Thar Desert.	
	Birds: Anatomy: Unidirectional lungs, pneumatic bones, and keeled	
	sternum; Physiology: Hemoglobin-O2 affinity adaptations for Himalayan	
	migration; Behaviour: Flock dynamics during trans-Himalayan	
	migration.	
	Mammals: Anatomy: Reduced eyes, echolocation melon, and elongated	
	rostrum; Physiology: Blood shunting during deep dives (bradycardia);	
	Behaviour: Solitary foraging in silt-laden Ganges waters.	
	Gill Adaptations in Indian Freshwater Fish: Structure: Lamellar	
	surface area expansion in <i>Catla catla</i> for low-O ₂ rivers (e.g., Yamuna	
	pollution hotspots); Function: ATPase pumps for ion regulation in	
	hypoxic waters;Case Study: Impact of industrial effluents on gill	
	morphology in Gangetic carps.	
	Amphibian Cutaneous Respiration: Structure: Vascularized skin with	
Module 2	mucous glands in Hoplobatrachus tigerinus; Function: CO2 excretion	12
	during monsoon flooding in Kerala's wetlands; Case Study: Role of skin	
	peptides in antimicrobial defense (biomedical applications).	
	Avian Unidirectional Airflow: Structure: Parabronchial lung design in	
	Anser indicus; Function: Cross-current gas exchange for high-altitude	
	hypoxia tolerance; Case Study: Satellite tracking of Himalayan migratory	
	routes and climate change impacts.	
	Diving Reflexes in Ganges River Dolphins: Physiology: Bradycardia	
	(heart rate drop to 12 bpm) and peripheral vasoconstriction; Adaptation:	
	Enhanced myoglobin stores in muscles for prolonged dives;	
	Conservation Link: Entanglement in fishing nets – physiological stress	
	studies.	
Module 3	Reptilian Cardiovascular Efficiency: Structure: Three-chambered	12
	heart with ventricular ridge in Varanus bengalensis; Function: Separation	
	of oxygenated/deoxygenated blood during activity; Thermoregulation:	
	Behavioral basking to optimize heart performance.	
	Avian High-Altitude Adaptations: Physiology: Increased capillary	
	density in bar-headed goose flight muscles; Genomic Insight:	
	Evolutionary mutations in mitochondrial enzymes.	
	Behavioral Adaptations to Environmental Stressors: Fish: Diurnal	
	feeding shifts in polluted rivers; Amphibians: Phenological changes in	
	breeding due to erratic monsoons.	
	Conservation Tools: GIS Mapping: Tracking <i>Platanista gangetica</i>	
Module 4	habitats in Brahmaputra.Citizen Science: eBird India data for Anser	12
module +	<i>indicus</i> migration patterns.	1 4
	Policy Integration: Wildlife (Protection) Act, 1972: Legal safeguards	
	for endangered amphibians; National Mission for Clean Ganga: Impact	
	on riverine biodiversity.	

- 1. Biology of Chordates by Pandey, B.N., and Mathur, Vartika
- 2. Conservation Biology for All by Navjot S. Sodhi and Paul R. Ehrlich

Reference Books:

- 1. Advanced Chordate Zoology by Gurdarshan Singh
- 2. Advanced Chordate Zoology by Aubrey Salazar

Semester-II		
Course Title: Histology, Histochemistry, Toxicology and Bioinstrumentation		
M.Sc. Zoology		
Course Code: ZOO144C202		
L-T-P-C- 3-1-0-4		
Course level: 500		
Credit Units: 4		
Scheme of Evaluation: Theory		

Course Objective: This course provides an advanced understanding of tissue structures, chemical techniques in histology, the toxic effects of substances at the cellular and systemic levels, and modern bioinstrumentation techniques used in research and diagnostics.

Course Outcomes:

On completion of the course the students will be able to:

Course Outcome	Course Outcome	Bloom's Taxonomy Level
CO1	<i>Identify and describe</i> advanced histological techniques and the detailed microanatomy of epithelial, connective, muscular, and nervous tissues.	BT 1
CO2	<i>Explain and interpret</i> the principles and applications of modern histochemical methods—including enzyme histochemistry, immunohistochemistry, and molecular hybridization—for tissue characterization.	BT 2
CO3	<i>Apply</i> experimental toxicological assays and high- throughput screening methods to assess the impact of xenobiotics on organ systems, integrating omics data and advanced imaging techniques.	BT 3
CO4	<i>Analyze and compare</i> cutting-edge bioinstrumentation techniques (e.g., advanced spectroscopy, chromatography, electrophoresis) to evaluate their efficacy in research and diagnostic applications.	BT 4

ModulesCourse contentPeriods

	Total	48
	artificial intelligence and machine learning in data analysis	10
	mass spectrometry techniques: Orbitrap, MALDI-TOF; Application of	
	time, high-throughput bioanalytical instrumentation; Cutting-edge	
	biosensors with digital platforms and IoT for real-time analysis; Real-	
	Microfluidic devices and lab-on-a-chip technologies; Integration of	
	spectroscopy and Fluorescence Lifetime Imaging Microscopy (FLIM);	12
	applications in cellular analysis; Advanced imaging modalities: Raman	
IV	SDS-PAGE, 2D-Gel Electrophoresis; Flow cytometry and its	
TT 7	High-performance liquid chromatography (HPLC); Electrophoresis:	
	Bioinstrumentation: Spectroscopy techniques: UV-Vis, IR, NMR, and Mass Spectrometry; Chromatography: Gas chromatography (GC),	
	Techniques for monitoring toxin levels in biological systems and environmental samples.	
	models; Computational toxicology and predictive modelling;	
	High-throughput screening methods and advanced in vitro toxicology	
III	toxicology: Guidelines and ethical considerations in toxicity studies;	12
	testing: Ames test, Comet assay, LD50 determination; Regulatory	
	nephrotoxicity, neurotoxicity, and reproductive toxicity; Toxicological	
	and metabolism; Organ-specific toxicity: Hepatotoxicity,	
	Toxicology: Principles and mechanisms of toxicology: Xenobiotics	
	Histochemical Analysis	
	Fluorescence Resonance Energy Transfer (FRET); Nanotechnology in	
	nanotechnology-based probes; Advanced molecular imaging:	
	Application of mass spectrometry imaging (MSI) in histochemical analysis; High-throughput automated staining platforms and	
	immunofluorescence and advanced antigen retrieval methods;	
Π	image analysis and integration with digital pathology; Multiplex	12
	techniques and fluorescence in situ hybridization (FISH); Quantitative	
	in research and diagnostics; Molecular histology: Hybridization	
	hydrolases, and transferases; Immunohistochemistry (IHC) and its role	
	applications; Enzyme histochemistry: Detection of oxidoreductases,	
	Histochemistry: Principles of histochemical staining and their	
	image quantification and pattern recognition in histological slides.	
	artificial intelligence in histological image analysis; Software-driven	
	Nano-scale imaging and integration with omics data; Application of	
-	diagnostics; 3D histological reconstruction and digital pathology;	
Ι	microscopy techniques ; Histopathology and applications in disease	12
	contrast, Fluorescence, Electron microscopy, Multiphoton and confocal	
	muscular, and nervous tissues; Advanced histological techniques: fixation, sectioning, staining, and imaging; Microscopy: Light, Phase	
	Advanced Histology: Structure and functions of epithelial, connective,	

Textbooks:

- 1. Junqueira, L. C., & Carneiro, J. (2013). *Basic histology: Text and atlas* (13th ed.). McGraw-Hill Medical.
- 2. Bancroft, J. D., & Gamble, M. (2008). *Theory and practice of histological techniques* (6th ed.). Churchill Livingstone.
- 3. Hayes, A. W. (2002). Principles and methods of toxicology (3rd ed.). CRC Press.

4. Willard, H. H., Merritt, A. F., Dean, J. A., & Settle, F. A. (2009). *Instrumental methods of analysis* (7th ed.). Thomson Brooks/Cole.

References:

- 1. Wheater, P. R., Burkitt, H. G., & Daniels, V. G. (2013). *Functional histology* (5th ed.). Churchill Livingstone.
- 2. Klaassen, C. D. (2008). *Casarett and Doull's toxicology: The basic science of poisons* (8th ed.). McGraw-Hill Medical.
- 3. Sharma, B. K. (2004). *Instrumental methods of chemical analysis* (3rd ed.). Goel Publishing House.

Semester-II
Course Title: Biochemistry and Immunology
M.Sc. Zoology
Course Code: ZOO144C203
L-T-P-C- 3-1-0-4
Credit Units: 4
Scheme of Evaluation: Theory

Course Objective:

Course Outcomes:

On completion of the course the students will be able to understand the basic and fundamental topics along with advanced topics of biochemistry and immunology and will be able to implement their future research.

Course Outcome	Course Outcome	Bloom's Taxonomy Level
CO1	Identify and recall the fundamental concepts of biomolecular structures (proteins, nucleic acids, carbohydrates, and lipids), enzyme kinetics, and the core components of the immune system	BT 1
CO2	Explain the mechanisms underlying enzyme action, metabolic pathways (including glycolysis, TCA cycle, and oxidative phosphorylation), and the processes governing both innate and adaptive immune responses.	BT 2
CO3	Apply biochemical techniques and immunological methods (e.g., chromatography, electrophoresis, ELISA, flow cytometry) to analyze experimental data and solve problems related to metabolic control and immune function.	BT 3
CO4	Critically evaluate current research and synthesize interdisciplinary approaches to propose innovative strategies for diagnosing and treating metabolic and immunological disorders.	BT 4

Modules	Course content	Periods

	Structure and properties of biomolecules (proteins, nucleic acids, carbohydrates, and lipids) Protein structure: primary, secondary, tertiary, and quaternary levels, Ensure biosticate Michaelia Monton equation	
I	Enzyme kinetics: Michaelis-Menten equation, enzyme inhibition, and allosteric regulation, Mechanism of enzyme action and catalytic strategies; Protein folding and misfolding diseases (e.g., prions, Alzheimer's disease).	12
	Biochemical techniques: chromatography, electrophoresis, spectrophotometry, and mass spectrometry; Metabolomics and proteomics approaches in biochemical research	
п	Introduction to metabolic pathways and bioenergetics: Glycolysis and gluconeogenesis, regulation and significance; Citric acid (TCA) cycle: steps, energy yield, and regulation; Oxidative phosphorylation and electron transport chain (ETC); Beta-oxidation of fatty acids and fatty acid synthesis; Amino acid metabolism: degradation and biosynthesis, Urea cycle and nitrogen metabolism; Integration of metabolic pathways and metabolic control Reactive oxygen species (ROS) and antioxidant defence mechanisms; Metabolic adaptations in fasting and starvation; Biochemical basis of obesity and metabolic syndrome	12
ш	Overview of the immune system: innate and adaptive immunity, Haematopoiesis and differentiation of immune cells; Cells of the immune system: macrophages, neutrophils, dendritic cells, T cells, B cells, and NK cells. Toll-like receptors (TLRs) and NOD-like receptors (NLRs); Mucosal immunity: gut-associated lymphoid tissue (GALT) and respiratory immunity ; Antigen recognition and processing; Major histocompatibility complex (MHC) – Class I and Class II pathways B cell development, activation, and antibody production ; Immunoglobulin structure, function, and gene rearrangement cell development and activation: CD4+ and CD8+ T cells, T cell receptor (TCR) signalling and co-stimulation; Cytokines and their roles in immune regulation; Complement system: classical, alternative, and lectin pathways; Immunological memory and vaccines; Hypersensitivity reactions (Type I-IV) and allergy mechanisms	12
IV	Antigen-antibody interactions and immunodiagnostic techniques (ELISA, flow cytometry, western blot); Immune tolerance and autoimmunity; Autoimmune diseases: rheumatoid arthritis, multiple sclerosis, type 1 diabetes; Immunodeficiencies: primary (SCID, XLA) and secondary (HIV/AIDS); Tumor immunology and immune evasion by cancer cells Immunotherapy: Monoclonal antibodies, checkpoint inhibitors, and CAR-T cells;Transplantation immunology: graft rejection and immunosuppressive therapy; Role of microbiota in immune system development and function Vaccines: Types, mechanisms, and new vaccine technologies (mRNA vaccines); Immune responses in pregnancy and neonatal immunity; Recent advances in immunology: CRISPR in immune research, nanotechnology in immunotherapy	12

Textbooks:

- 1. Nelson, D. L., & Cox, M. M. (2021). Lehninger principles of biochemistry (8th ed.). W. H. Freeman.
- 2. Owen, J. A., Punt, J., Stranford, S. A., & Jones, P. P. (2020). Kuby immunology (9th ed.). W. H. Freeman.

References:

- 1. Berg, J. M., Tymoczko, J. L., Gatto, G. J., & Stryer, L. (2019). Biochemistry (9th ed.). W. H. Freeman.
- 2. Garrett, R. H., & Grisham, C. M. (2022). Biochemistry (7th ed.). Cengage Learning
- 3. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2022). Cellular and molecular immunology (10th ed.). Elsevier.
- 4. Murphy, K., & Weaver, C. (2022). Janeway's immunobiology (10th ed.). W. W. Norton & Company.

Course Title: Limnology and Economic Zoology			
Subject Code: ZOO144 M204			
Programme: M.Sc. Zoology			
Semester: II			
L-T-P-C: 3-1-0-4			
Course Level: 500			
Assessment type:			
Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce)			
Attendance: 5%, Mid Sem Examination: 10%			
Semester End Examination (SEE): 50%			

Course Objectives:

This course aims to enhance knowledge and analytical skills in limnology and economic zoology, focusing on understanding principles, applications, and sustainable solutions in aquatic ecosystems. To apply interdisciplinary approaches to design research, evaluate conservation policies, and innovate sustainable solutions.

Learning Outcomes:

	Course Outcome	Bloom's Taxonomy Level (BT)
CO 1	Analyze the biotic and abiotic factors influencing aquatic ecosystems and evaluate economic zoological practices.	BT 4,5
CO 2	Design research methodologies and conservation strategies for sustainable management of aquatic resources.	BT 5,6
CO 3	Develop integrated approaches for pest management, fishery, and livestock management.	BT 6
CO 4	Evaluate advanced limnological studies in the context of Northeast India and analyze case studies for conservation.	BT 4,5,6

Module	Course content	Teaching hours	
		20 Page	

Module 1	Advanced Limnology Overview: Limnological Principles and Dynamics: Definitions, scope, historical development; Exploring origin and evolution of lentic and lotic ecosystems; Understanding physical, chemical, and geological factors shaping aquatic habitats in lentic and lotic limnological systems; Advanced water chemistry concepts in limnological systems; Evaluates influence of hydrological regimes, geomorphology, and landscape connectivity on lotic ecosystem processes; Aquatic Biota and Trophic Interactions: Analyzes diversity, distribution, and ecological roles of plankton, macrophytes, nekton, and benthos; Conceptualization of trophic dynamics, food web structure, and energy flow in aquatic ecosystems. Regional Limnology and Case Studies: Aquatic ecosystems in Northeast India; Synthesizing unique limnological characteristics of floodplain lakes and rivers; Case studies of major aquatic ecosystems; Anthropogenic impacts and management strategies.	12
Module 2	 Economic Zoology: Foundations and Applications: Economic Zoology Overview: Historical development and current scope; Economic importance evaluation of invertebrate/vertebrate groups. Sericulture Principles and Practices: Evaluation of sericulture principles and practices; Process of silk production, silkworm genetics, and silk processing technologies. Lac Culture Analysis: Understanding lac insect biology, host plant interactions, resin production, and value-added products. Pest Management and Vector Control: Ecological principles underlying pest outbreaks; Pest control Strategies- chemical, biological, and cultural methods of pest control. Invertebrates in Biotechnology and Industry: Applications in biotechnology, including biomaterials, pharmaceuticals, and bioremediation; Designing sustainable utilization strategies for invertebrates; Role of invertebrates in pollination, decomposition, and ecosystem services. 	12
Module 3	Applied Limnology and Aquatic Resource Management: Advanced Limnological Techniques: Utility of paleolimnological and molecular techniques for environmental reconstruction; Developing water quality assessment protocols; Limnology's application in pollution control, eutrophication management, restoration ecology. Fisheries and Aquaculture: Developing sustainable practices in fisheries management, aquaculture, and fish conservation; Role of fish biology, population dynamics, and ecology; Biotechnology and genetics' role in aquaculture and fish breeding.	12 21 Page

	Aquatic Resource Management and Policy Overview: Designing sustainable strategies considering ecological, social, and economic factors; Understanding legal and policy frameworks for water resources, biodiversity conservation, and fisheries management; Evaluating challenges and opportunities for integrated water resources management in India.	
Module 4	 Applied Conservation and Sustainable Development: Aquatic Ecosystem Conservation Overview: Analysing global and Northeast Indian threatened ecosystems; Designing comprehensive conservation plans integrating ecological, social, and economic aspects; Role of protected areas, habitat restoration, and community engagement. Integrated Approaches in Economic Zoology: Development of sustainable agriculture, rural development, biodiversity conservation; Designing projects promoting economic development and environmental sustainability; Ethical considerations in animal utilization for economic purposes. Case studies: Design and develop comprehensive plan for limnological or economic zoology challenge; Integrate course knowledge and skills for real-world problem application for lake restoration plan and sustainable development plan for rural community. 	12
Total		48

- 1. Pedigo, L. P., & Rice, M. E. (2009). *Entomology and pest management* (6th ed.). Pearson Education Limited.
- 2. Horne, A. J., & Goldman, C. R. (1994). Limnology (2nd ed.). McGraw-Hill.
- 3. Shukla, G. S. and Upadhyay, V. B. (2011): Economic Zoology. Rastogi Publications.

Reference Books:

- 1. Wetzel, R. G. (2001). Limnology: Lake and River Ecosystems (3rd ed.). Academic Press.
- 2. Bhatt, S. D., & Pathak, J. K. (2019). Freshwater Ecosystems of North-East India. Springer.
- 3. Dhaliwal, G. S., & Arora, R. (2006). Integrated Pest Management. Kalyani Publishers.
- **4.** Singh, K. M., & Meena, M. S. (2015). Sericulture and Bioculture-Based Livelihoods in Central India. ICAR.

Course Title: Practical-III
Subject Code: ZOO144M215
Programme: M.Sc. Zoology
Semester: I
L-T-P-C: 0-0-4-2
Course Level: 500
Assessment type:
Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce)
Attendance: 5%, Mid Sem Examination: 10%
Semester End Examination (SEE): 50%

Course Objectives:

This course develops skills in analyzing anatomical diversity and ecological dynamics to assess sustainability. Students apply histochemical techniques for tissue analysis and synthesize toxicological data (LD50, FTIR/GC-22 | P a g e MS) to solve environmental and industrial challenges, integrating fieldwork, lab methods, and critical thinking in zoological sciences.

Learning Outcomes:

	Course Outcome	Bloom's Taxonomy Level (BT)
CO1	Analyse anatomical and morphological structures (e.g., scales, skeletal systems, organs) using comparative methods to infer functional and evolutionary relationships.	BT4
CO2	Evaluate ecological and population data (e.g., survivorship curves, diversity indices, aquatic parameters) to assess ecosystem health and biodiversity	BT5
CO3	Apply histological and histochemical techniques (e.g., H&E staining, PAS, enzyme detection) to identify tissue components and biochemical activities.	BT4
CO4	Synthesize toxicological and instrumental data (e.g., LD50 estimation, FTIR/GC-MS, behavioral assays) to propose solutions for environmental and industrial challenges.	BT 5

Module	Course content	Teaching Hours
Module 1	 Study of placoid, cycloid and ctenoid scales through permanent slides/photographs. Study of disarticulated skeleton of Frog/Fowl/Rabbit. Study of Carapace and plastron of turtle/tortoise. Study of Mammalian skulls: One herbivorous and one carnivorous animal Project on comparative structure of any two organs (heart, lung, kidney, eye, and ear) 	24
Module 2	 Study of life tables and plotting of survivorship curves of different types from the hypothetical/real data provided. Determination of population density by quadrat method and calculation of Shannon-Weiner diversity index in a natural/hypothetical community. Study of an aquatic ecosystem: phytoplankton and zooplankton, measurement of temperature, turbidity/penetration of light, determination of pH, and dissolved oxygen content (Winkler's method), free CO2. Study of fossils from models/pictures. Study of homology and analogy from suitable specimens/models. Report on a visit to National Park/Biodiversity Park/Wildlife sanctuary 	24
Module 3	 Study of histological structure of tissues from fish/mice Collagen visualization using picric acid and acid fuchsin on tissue sections. Detect alkaline phosphatase activity in intestinal tissue with chromogenic substrates. Identify carbohydrates (glycogen/mucins) via periodic acid-Schiff reaction. 	24

	1.	Estimate LD_{50} using <i>Danio rerio/ Channa punctatus</i> exposed with chemical toxicant	
Module 4	2.	Behavioural Toxicology Study on Earthworms or Fish	24
	3.	FTIR (Fourier Transform Infrared Spectroscopy) Demonstration.	
	4.	GC-MS (Gas Chromatography-Mass Spectrometry) Demonstration	
Total			96

Course Title: Practical-IV	
Subject Code: ZOO144M215	
Programme: M.Sc. Zoology	
Semester: II	
L-T-P-C: 0-0-4-2	
Course Level: 500	
Assessment type:	
Continuous evaluation: 35% (Assignment, Seminar, Group Discussion, Quiz, Viva-voce)	
Attendance: 5%, Mid Sem Examination: 10%	
Semester End Examination (SEE): 50%	

Course Objectives:

Apply fundamental limnological techniques for the assessment and analysis of diverse aquatic ecosystems. Demonstrate practical skills in economic zoology and apply techniques for sustainable resource utilization.

Learning Outcomes:

Course Outcome		Bloom's Taxonomy Level (BT)
CO1	Apply methods for physico-chemical analysis of water, analyze the data, and relate it to ecological conditions.	BT 3, 4
CO2	Apply plankton sampling techniques, analyze plankton community composition, and assess diversity.	BT 3,4
CO3	Apply benthic macroinvertebrate sampling, analyze community structure, and use them for bioassessment.	В 3, 4
CO4	Apply methods for aquatic macrophyte identification and analyze their distribution.	BT 3

Module	Course content	Teaching Hours
Module 1	 Determine protein concentration in a sample using Bradford Assay Study the effect of pH/temperature on amylase activity using the iodine-starch test. Separate proteins by molecular weight and analyze banding patterns. Identify amino acids in a mixture using Rf values. 	24
Module 2	 Identify and quantify WBC types under a microscope. Observe phagocytic activity using India ink-stained yeast and macrophages (e.g., from chicken blood). 	24

	3. Demonstration of ELISA technique.	
	4. Determine ABO/Rh blood groups using agglutination reactions.	
Module 3	 To analyze the physico-chemical parameters of a lotic and lentic wate system - temperature, pH, dissolved oxygen, salinity, and turbidity and nutrient content (nitrates, phosphates). To analyze and compare plankton communities in different aquatic samples and assess their diversity. To study benthic macroinvertebrate communities as indicators of water quality and ecosystem health. To identify common aquatic macrophytes and analyze their distribution and ecological roles in aquatic ecosystems. 	24
Module 4	 Study of silk moths- types of silk moths, rearing appliances of mulberry and non-mulberry silk worm demonstration, life Table creation, To study apiculture practices and analyze the quality and composition of honey. To identify economically important invertebrates, including pests and beneficial species, and explore pest management strategies. Field visit. 	24
Total		96

Reference books

- 1. Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses (3rd ed.). Springer.
- 2. APHA, AWWA, & WEF. (2017). *Standard methods for the examination of water and wastewater* (23rd ed.). American Public Health Association
- 3. Elzinga, R. J. (2004). Fundamentals of entomology (6th ed.). Blackwell Publishing.